Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry.
نویسندگان
چکیده
We propose a novel application of secondary electrospray ionization-mass spectrometry (SESI-MS) as a real-time clinical diagnostic tool for bacterial infection. It is known that volatile organic compounds (VOCs), produced in different combinations and quantities by bacteria as metabolites, generate characteristic odors for certain bacteria. These VOCs comprise a specific metabolic profile that can be used for species or serovar identification, but rapid and sensitive analytical methods are required for broad utility. In this study, the VOC profiles of five bacterial groups from four genera, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Pullorum, were characterized by SESI-MS. Thirteen compounds were identified from these bacterial cultures, and the combination of these VOCs creates a unique pattern for each genus. In addition, principal component analysis (PCA) was applied for the purpose of species or serovar discrimination. The first three principal components exhibit a clear separation between the metabolic volatile profiles of these five bacterial groups that is independent of the growth medium. As a first step toward addressing the complexity of clinical application, in vitro tests for mixed cultures were conducted. The results show that individual species or serovars in a mixed culture are identifiable among a biological VOC background, and the ratios of the detected volatiles reflect the proportion of each bacterium in the mixture. Our data confirm the utility of SESI-MS in real-time identification of bacterial species or serovars in vitro, which, in the future, may play a promising clinical role in diagnosing infections.
منابع مشابه
Characterizing Bacterial Volatiles using Secondary Electrospray Ionization Mass Spectrometry (SESI-MS)
Secondary electrospray ionization mass spectrometry (SESI-MS) is a method developed for the rapid detection of volatile compounds, without the need for sample pretreatment. The method was first described by Fenn and colleagues and has been applied to the detection of illicit drugs and explosives, the characterization of skin volatiles, and the analysis of breath. SESI ionization occurs by proto...
متن کاملDifferentiation of oral bacteria in in vitro cultures and human saliva by secondary electrospray ionization – mass spectrometry
The detection of bacterial-specific volatile metabolites may be a valuable tool to predict infection. Here we applied a real-time mass spectrometric technique to investigate differences in volatile metabolic profiles of oral bacteria that cause periodontitis. We coupled a secondary electrospray ionization (SESI) source to a commercial high-resolution mass spectrometer to interrogate the headspa...
متن کاملDetection of volatile organic compounds in breath using thermal desorption electrospray ionization-ion mobility-mass spectrometry.
A thermal desorption unit has been interfaced to an electrospray ionization-ion mobility-time-of-flight mass spectrometer. The interface was evaluated using a mixture of six model volatile organic compounds which showed detection limits of <1 ng sample loaded onto a thermal desorption tube packed with Tenax, equivalent to sampled concentrations of 4 microg L(-1). Thermal desorption profiles wer...
متن کاملThe MALDI Process and Method
Matrix-assisted laser desorption/ionization (MALDI) is one of the two “soft” ionization techniques besides electrospray ionization (ESI) which allow for the sensitive detection of large, non-volatile and labile molecules by mass spectrometry. Over the past 15 years, MALDI has developed into an indispensable tool in analytical chemistry, and in analytical biochemistry in particular. This chapter...
متن کاملAnalysis of human breath samples using a modified thermal desorption: gas chromatography electrospray ionization interface.
A two-stage thermal desorption/secondary electrospray ionization/time-of-flight mass spectrometry for faster targeted breath profiling has been studied. A new secondary electrospray ionization (SESI) source was devised to constrain the thermal desorption plume and promote efficient mixing in the ionization region. Further, a chromatographic pre-separation stage was introduced to suppress interf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of clinical microbiology
دوره 48 12 شماره
صفحات -
تاریخ انتشار 2010